
Building Hybrid Systems with Boost.Python

Author: David Abrahams

Contact: dave@boost-consulting.com

Organization: Boost Consulting

Date: 2003-03-13

Author: Ralf W. Grosse-Kunstleve

Copyright

mailto:dave@boost-consulting.com
http://www.boost-consulting.com


Abstract

Boost.Python is an open source C++ library which provides a concise IDL-like interface for

http://www.swig.org/
http://www.riverbankcomputing.co.uk/sip/index.php
http://www.trolltech.com/


http://cxx.sourceforge.net/
http://www.boost.org/libs/python/doc


insulate C++ users from low-level Python ’C’ API, replacing error-prone ’C’ interfaces like
manual reference-count management and raw



}
}

Now here’s the wrapping code we’d use to expose it with Boost.Python:

#include <boost/python.hpp>
using namespace boost::python;

BOOST PYTHON MODULE(hello)

{



Exposing Classes





This does not result in adding attributes to the World instance dict

http://www.pfdubois.com/numpy/


Inheritance

C++ inheritance relationships can be represented to Boost.Python by adding an optional
bases<...> argument to the class <...>





>>> calls f(Derived(), ’forty-two’)

9

Things to notice about the dispatcher class:

• The key element which allows overriding in Python is the call method invocation, which
uses the same global type conversion registry as the C++ function wrapping does to
convert its arguments from C++ to Python and its return type from Python to C++.

• Any constructor signatures you wish to wrap must be replicated with an initial PyObject*

argument

• The dispatcher must store this argument so that it can be used to invoke call method

• The f default member function is needed when the function being exposed is not pure
virtual; there’s no other way Base::f can be called on an object of type BaseWrap

http://www.boost.org/libs/python/pyste
http://www.gccxml.org/HTML/Index.html


};

#include <boost/python.hpp>



Boost.Python provides a class object which automates reference counting and provides
conversion to Python from C++ objects of arbitrary type. This significantly reduces the
learning effort for prospective extension module writers.

Creating an object from any other type is extremely simple:

object s(‘‘hello, world’’); // s manages a Python string

object has templated interactions with all other types, with automatic to-python conver-
sions. It happens so naturally that it’s easily overlooked:



library of C++ classes with Boost.Python bindings, and for a while the growth was mainly
concentrated on the C++ parts. However, as the toolbox is becoming more complete, more
and more newly added functionality can be implemented in Python.

This figure shows the estimated ratio of newly added C++ and Python code over time as

http://www.swig.org/


By early 2001 development had stabilized and few new features were being added, however
a disturbing new fact came to light: Ralf had begun testing Boost.Python on pre-release ver-
sions of a compiler using the EDG front-end, and the mechanism at the core of Boost.Python
responsible for handling conversions between Python and C++ types was failing to compile.

http://www.edg.com
http://www.boost-consulting.com
http://www.boost.org/libs/python/pyste


[VELD1995] T. Veldhuizen, “Expression Templates,” C++ Report, Vol. 7 No. 5 June 1995,
pp. 26-31. http://osl.iu.edu/˜tveldhui/papers/Expression-Templates/exprtmpl.html

http://osl.iu.edu/~tveldhui/papers/Expression-Templates/exprtmpl.html

