
mailto:dave@boost-consulting.com
http://www.boost-consulting.com


http://www.swig.org/
http://www.riverbankcomputing.co.uk/sip/index.php
http://www.trolltech.com/
http://cxx.sourceforge.net/
http://www.boost.org/libs/python/doc




4return 0; // error occurred
}

// Table of wrapped functions to be exposed by the module
static PyMethodDef methods[] = {

{ ‘‘greet’’, greet wrap, METH VARARGS, ‘‘return one of 3 parts of a greeting’’ }
, { NULL, NULL, 0, NULL }



5Exposing Classes

C++ classes and structs are exposed with a similarly-terse interface. Given:

struct World
{

void set(std::string msg) { this- >msg = msg; }
std::string greet() { return msg; }
std::string msg;

};



6Constructors

Since ourWorld class is just a plainstruct , it has an implicit no-argument (nullary) constructor. Boost.Python exposes
the nullary constructor by default, which is why we were able to write:

>>> planet = hello.World()



http://www.pfdubois.com/numpy/




http://www.boost.org/libs/python/pyste
http://www.gccxml.org/HTML/Index.html




11In the example above,4 and10 are converted to Python objects before the indexing and multiplication operations are
invoked.

Theextract



12

This figure shows the estimated ratio of newly added C++ and Python code over time as new algorithms are implemented.
We expect this ratio to level out near 70% Python. Being able to solve new problems mostly in Python rather than a more

http://www.swig.org/
http://www.edg.com
http://www.boost-consulting.com
http://www.boost-consulting.com


13The emergence of a powerful new type system in Python 2.2 made the choice of whether to maintain compatibility with
Python 1.5.2 easy: the opportunity to throw away a great deal of elaborate code for emulating classic Python classes

http://www.boost.org/libs/python/pyste
http://osl.iu.edu/~tveldhui/papers/Expression-Templates/exprtmpl.html

